Introduction of Artificial Intelligence Assignment 6

WANG Rongqing 2015K8009929046

October 18, 2017

2.6.4

(i) $A \to B, A \vdash B$

Proof. The proof is as follow.

(1) $A \to B, A \vdash A \to B$ (from (\in)) (2) $A \to B, A \vdash A$ (from (\in)) (3) $A \to B, A \vdash B$ (from ($\to -$), (1), (2))

(ii) $A \vdash B \to A$

Proof. The proof is as follow.

(1)
$$A, B \vdash A$$
 (from (\in))
(2) $A \vdash B \rightarrow A$ (from (\rightarrow +), (1))

(iv) $A \to (B \to C), A \to B \vdash A \to C$

Proof. The proof is as follow.

2.6.9

(i) $A \vdash A \lor B$, $B \lor A$

Proof. The proof is as follow.

(1) $A \vdash A$ (from (\in)) (2) $A \vdash A \lor B, B \lor A$ (from (\lor +), (1))

Proof. The proof for $A \lor B \vdash B \lor A$ is as follow.

(1) $A \vdash B \lor A$ (from 2.6.9(i), $A \Rightarrow A, B \Rightarrow B$, term 2) (2) $B \vdash B \lor A$ (from 2.6.9(i), $A \Rightarrow B, B \Rightarrow A$, term 1) (3) $A \lor B \vdash B \lor A$ (from (\lor -), (1), (2))

When we do substitution $A \Rightarrow B$, $B \Rightarrow A$, we will have $B \lor A \vdash A \lor B$, therefore we have proved the other side.

(iii)
$$A \lor (B \lor C) \mapsto (A \lor B) \lor C$$

Proof. Before proving the quality, we will first prove a lemma:

(transitivity): if $A \vdash B$, $B \vdash C$, then $A \vdash C$.

The proof is as follow.

(1)
$$A \vdash B$$
 (given)
(2) $B \vdash C$ (given)
(3) $A, B \vdash C$ (from (+), (2))
(4) $A \vdash B \to C$ (from (\to +), (3))
(5) $A \vdash C$ (from (\to -), (1), (4))

Then, the proof for $A \lor (B \lor C) \vdash (A \lor B) \lor C$ can be generated as follow.

And the proof for $(A \lor B) \lor C \vdash A \lor (B \lor C)$ can be generated as follow.

(iv) $A \lor B \vdash \neg A \to B$

 $\mathbf{3}$

Proof. The proof for $A \lor B \vdash \neg A \to B$ is as follow.

Before proving $\neg A \rightarrow B \vdash A \lor B$, we will first prove a lemma:

(contraposition): if
$$A \vdash B$$
, then $\neg B \vdash \neg A$.

The proof is as follow.

(1)
$$A \vdash B$$
 (given)
(2) $\varnothing \vdash A \to B$ (from $(\to +)$, (1))
(3) $A, \neg B \vdash A \to B$ (from $(+)$, (2))
(4) $A, \neg B \vdash A$ (from (\in))
(5) $A, \neg B \vdash \neg B$ (from (\in))
(6) $A, \neg B \vdash B$ (from $(\to -)$, (3), (4))
(7) $\neg B \vdash \neg A$ (from $(\neg -)$, (5), (6))

Then, the proof for $\neg A \rightarrow B \vdash A \lor B$ can be generated as follow.

(1)	$A \ \vdash A \lor B$	(from 2.6.9(i), $A \Rightarrow A, B \Rightarrow B$)
(2)	$\neg(A \lor B) \vdash \neg A$	(from (contraposition), (1))
(3)	$\neg(A \lor B) \vdash \neg B$	(similar to (2))
(4)	$\neg A \to B, \ \neg (A \lor B) \ \vdash \neg A$	(from (+), (2))
(5)	$\neg A \to B, \ \neg (A \lor B) \ \vdash \neg B$	(from (+), (3))
(6)	$\neg A \to B, \ \neg (A \lor B) \ \vdash \neg A \to B$	(from (\in))
(7)	$\neg A \to B, \ \neg (A \lor B) \ \vdash B$	(from $(\to -)$, (4), (6))
(8)	$\neg A \to B \ \vdash A \lor B$	(from $(\neg -)$, (5), (7))

The line (2) and (3) can be picked out as a theorem, which we will use many times afterwards:

$$(\neg \lor)$$
: $\neg (A \lor B) \vdash \neg A, \neg B.$

(v) $A \to B \vdash \neg A \lor B$

Proof. The proof for $\neg A \lor B \vdash A \to B$ is as follow.

(1)	$A, \ \neg A, \ \neg B \ \vdash A$	(from (\in))
(2)	$A, \ \neg A, \ \neg B \ \vdash \neg A$	(from (\in))
(3)	$A, \ \neg A \ \vdash B$	(from $(\neg -)$, (1), (2))
(4)	$\neg A \ \vdash A \rightarrow B$	(from $(\rightarrow +)$, (3))
(5)	$B \ \vdash A \to B$	(from 2.6.4 (ii))
(6)	$\neg A \lor B \ \vdash A \to B$	(from $(\lor -)$, (4), (5))

Before proving $A \to B \vdash \neg A \lor B$, we will first prove a lemma:

$$(\neg\neg): A \vdash \neg \neg A.$$

The proof is as follow.

(1)
$$\neg \neg A, \neg A \vdash \neg A$$
 (from \in)
(2) $\neg \neg A, \neg A \vdash \neg \neg A$ (from \in)
(3) $\neg \neg A \vdash A$ (from $\neg \neg$, (1), (2))
(4) $\neg \neg \neg A, A \vdash A$ (from \in)
(5) $\neg \neg \neg A, A \vdash \neg \neg \neg A$ (from \in)
(6) $\neg \neg \neg A \vdash \neg A$ (from (3), $A \Rightarrow \neg A$)
(7) $\neg \neg \neg A, A \vdash \neg A$ (from (transitivity), (5), (6))
(8) $A \vdash \neg \neg A$ (from $\neg \neg$, (4), (7))

The proof for $A \to B \vdash \neg A \lor B$ can be generated as follow.

(1)
$$\neg A \vdash \neg A \lor B$$
 (from 2.6.9(i), $A \Rightarrow \neg A, B \Rightarrow B$)
(2) $\neg (\neg A \lor B) \vdash \neg \neg A$ (from (contraposition), (1); or $(\neg \lor)$))
(3) $\neg (\neg A \lor B) \vdash \neg \neg A$ (from (+), (2))
(4) $A \Rightarrow B, \neg (\neg A \lor B) \vdash \neg \neg A$ (from (+), (2))
(5) $A \Rightarrow B, \neg (\neg A \lor B) \vdash \neg B$ (from (+), (3))
(6) $\neg \neg A \vdash A$ (from $(\neg \neg)$)
(7) $A \Rightarrow B, \neg (\neg A \lor B) \vdash A$ (from (transitivity), (4), (6))
(8) $A \Rightarrow B, \neg (\neg A \lor B) \vdash A \Rightarrow B$ (from (\in))
(9) $A \Rightarrow B, \neg (\neg A \lor B) \vdash B$ (from $(\rightarrow -), (6), (8)$)
(10) $\neg A \Rightarrow B \vdash A \lor B$ (from $(\neg -), (5), (9)$)

(vi) $\neg (A \lor B) \vdash \neg A \land \neg B$

Proof. The proof for $\neg(A \lor B) \vdash \neg A \land \neg B$ is as follow.

(1)
$$\neg (A \lor B) \vdash \neg A$$
 (from $(\neg \lor)$)
(2) $\neg (A \lor B) \vdash \neg B$ (from $(\neg \lor)$)
(3) $\neg (A \lor B) \vdash \neg A \land \neg B$ (from $(\land +)$, (1), (2))

The proof for $\neg A \land \neg B \vdash \neg (A \lor B)$ is as follow.

(vii) $\neg (A \land B) \vdash \neg A \lor \neg B$

Proof. Similar to (vi), the proof for $\neg(A \land B) \vdash \neg A \lor \neg B$ is as follow.

(1)
$$\neg(\neg A \lor \neg B) \vdash \neg \neg A$$
(from $(\neg \lor)$)(2) $\neg \neg A \vdash A$ (from $(\neg \neg)$)(3) $\neg(\neg A \lor \neg B) \vdash A$ (from (transitivity), (1), (2))(4) $\neg(\neg A \lor \neg B) \vdash B$ (similar to (3))(5) $\neg(\neg A \lor \neg B) \vdash A \land B$ (from $(\land +), (3), (4)$)(6) $\neg(A \land B) \vdash \neg \neg (\neg A \lor \neg B)$ (from (contraposition), (5))(7) $\neg \neg (\neg A \lor \neg B) \vdash (\neg A \lor \neg B)$ (from $(\neg \neg)$)(8) $\neg(A \land B) \vdash (\neg A \lor \neg B)$ (from (transitivity), (6), (7))

The proof for $\neg A \lor \neg B \vdash \neg (A \land B)$ is as follow.

$$\begin{array}{ccccc} (1) & \neg\neg(\neg A \lor \neg B) \vdash \neg A \lor \neg B & (from (\neg \neg)) \\ (2) & A, & B, & \neg\neg(\neg A \lor \neg B) \vdash \neg A \lor \neg B & (from (+), & (1)) \\ (3) & \neg A \lor \neg B \vdash \neg \neg A \rightarrow \neg B & (from (2.6.9(v))) \\ (4) & A, & B, & \neg\neg(\neg A \lor \neg B) \vdash \neg \neg A \rightarrow \neg B & (from (transitivity), & (2), & (3)) \\ (5) & A, & B, & \neg\neg(\neg A \lor \neg B) \vdash \neg \neg A & (from (c)) \\ (6) & A \vdash \neg \neg A & (from (-)) \\ (7) & A, & B, & \neg\neg(\neg A \lor \neg B) \vdash \neg A & (from (vransitivity), & (5), & (6)) \\ (8) & A, & B, & \neg\neg(\neg A \lor \neg B) \vdash \neg B & (from (-), & (4), & (7)) \\ (9) & A, & B, & \neg\neg(\neg A \lor \neg B) \vdash B & (from (-), & (8), & (9)) \\ (11) & A \vdash B \rightarrow \neg(\neg A \lor \neg B) & (from (-), & (8), & (9)) \\ (11) & A \vdash B \rightarrow \neg(\neg A \lor \neg B) & (from (-), & (8), & (9)) \\ (12) & & & \downarrow A \rightarrow (B \rightarrow \neg(\neg A \lor \neg B)) & (from (+), & (11)) \\ (13) & A \land B \vdash A \rightarrow (B \rightarrow \neg(\neg A \lor \neg B)) & (from (+), & (12)) \\ (14) & A \land B \vdash A \rightarrow (B \rightarrow \neg(\neg A \lor \neg B)) & (from (A)), & (14) \\ (15) & A \land B \vdash A \rightarrow (B \rightarrow \neg(\neg A \lor \neg B)) & (from (A)), & (14)) \\ (16) & A \land B \vdash B & (from (A \land -), & (14)) \\ (17) & A \land B \vdash B \rightarrow \neg(\neg A \lor \neg B) & (from (A \rightarrow -), & (13), & (15)) \\ (18) & A \land B \vdash A \neg (A \lor \neg B) & (from (-), & (13), & (15)) \\ (19) & \neg\neg(\neg A \lor \neg B) \vdash \neg(A \land B) & (from (contraposition), & (18)) \\ (20) & \neg A \lor \neg B \vdash \neg(\neg A \lor \neg B) & (from (\neg \neg)) \\ (21) & \neg A \lor \neg B \vdash \neg(A \land A B) & (from (ransitivity), & (19), & (20)) \\ \end{array}$$

(viii) $\varnothing \vdash A \lor \neg A$

Proof. The proof is as follow.

(1)
$$\neg (A \lor \neg A) \vdash \neg A$$
 (from $(\neg \lor)$)
(2) $\neg (A \lor \neg A) \vdash \neg \neg A$ (from $(\neg \lor)$)
(3) $\varnothing \vdash A \lor \neg A$ (from $(\neg -)$, (1), (2))