Introduction of Artificial Intelligence

Assignment 6

WANG Rongqing
2015K8009929046
October 18, 2017
2.6.4
(i) $A \rightarrow B, A \vdash B$

Proof. The proof is as follow.
(1) $A \rightarrow B, A \vdash A \rightarrow B \quad($ from $(\in))$
(2) $\quad A \rightarrow B, A \vdash A \quad($ from $(\in))$
(3) $A \rightarrow B, A \vdash B \quad($ from $(\rightarrow-),(1),(2))$
(ii) $A \vdash B \rightarrow A$

Proof. The proof is as follow.
(1) $A, B \vdash A \quad($ from $(\in))$
(2) $\quad A \vdash B \rightarrow A \quad($ from $(\rightarrow+), \quad(1))$
(iv) $A \rightarrow(B \rightarrow C), A \rightarrow B \vdash A \rightarrow C$

Proof. The proof is as follow.
(1)
$A \rightarrow B, A \vdash B \quad($ from 2.6.4(i) $, A \Rightarrow A, B \Rightarrow B)$
(2) $\quad A \rightarrow(B \rightarrow C), A \vdash B \rightarrow C$
(from 2.6.4(i), $A \Rightarrow A, B \Rightarrow(B \rightarrow C)$)
(3) $A \rightarrow(B \rightarrow C), A \rightarrow B, A \vdash B \quad$ (from (+), (1))
(4) $A \rightarrow(B \rightarrow C), A \rightarrow B, A \vdash B \rightarrow C \quad$ (from (+), (2))
(5) $A \rightarrow(B \rightarrow C), A \rightarrow B, A \vdash C \quad($ from $(\rightarrow-)$, (3), (4))

2.6 .9

(i) $A \vdash A \vee B, B \vee A$

Proof. The proof is as follow.

$$
\begin{array}{lll}
\text { (1) } & A \vdash A & (\text { from }(\epsilon)) \\
\text { (2) } & A \vdash A \vee B, B \vee A & (\text { from }(\vee+), \quad(1))
\end{array}
$$

(ii) $A \vee B \mapsto B \vee A$

Proof. The proof for $A \vee B \vdash B \vee A$ is as follow.

$$
\begin{array}{rrl}
\text { (1) } & A \vdash B \vee A & (\text { from 2.6.9(i) }, A \Rightarrow A, B \Rightarrow B, \text { term 2) } \\
\text { (2) } & B \vdash B \vee A & (\text { from 2.6.9(i) }, A \Rightarrow B, B \Rightarrow A, \text { term 1) } \\
\text { (3) } & A \vee B \vdash B \vee A & (\text { from }(\vee-),(1),(2))
\end{array}
$$

When we do substitution $A \Rightarrow B, B \Rightarrow A$, we will have $B \vee A \vdash A \vee B$, therefore we have proved the other side.
(iii) $A \vee(B \vee C) \mapsto(A \vee B) \vee C$

Proof. Before proving the quality, we will first prove a lemma:
(transitivity): if $A \vdash B, B \vdash C$, then $A \vdash C$.

The proof is as follow.

(1)	A	$\vdash B$		(given)
(2)	B	$\vdash C$		(given)
(3)	A, B	$\vdash C$		$($ from $(+),(2))$
(4)	A	$\vdash B \rightarrow C$		$($ from $(\rightarrow+),(3))$
(5)	A	$\vdash C$		$($ from $(\rightarrow-),(1),(4))$

Then, the proof for $A \vee(B \vee C) \vdash(A \vee B) \vee C$ can be generated as follow.

$$
\begin{equation*}
A \vee B \vdash(A \vee B) \vee C \quad(\text { from 2.6.9(i), } A \Rightarrow(A \vee B), B \Rightarrow C) \tag{1}
\end{equation*}
$$

$C \vdash(A \vee B) \vee C \quad($ from 2.6.9(i) $, A \Rightarrow C, B \Rightarrow(A \vee B))$
$A \vdash A \vee B \quad($ from 2.6.9(i) $, A \Rightarrow A, B \Rightarrow B)$
$B \vdash A \vee B \quad($ from 2.6.9(i) $, A \Rightarrow B, B \Rightarrow A)$
$A \vdash(A \vee B) \vee C \quad($ from (transitivity), (1), (3))
$B \vdash(A \vee B) \vee C \quad$ (from (transitivity), (1), (4))
$B \vee C \vdash(A \vee B) \vee C \quad($ from $(\vee-), \quad(6), \quad(2))$
(8) $A \vee(B \vee C) \vdash(A \vee B) \vee C \quad($ from $(\vee-),(3),(7))$

And the proof for $(A \vee B) \vee C \vdash A \vee(B \vee C)$ can be generated as follow.

$$
\begin{equation*}
A \vdash A \vee(B \vee C) \quad(\text { from 2.6.9(i) }, \quad A \Rightarrow A, B \Rightarrow(B \vee C)) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
B \vee C \vdash A \vee(B \vee C) \quad(\text { from 2.6.9(i) }, \quad A \Rightarrow(B \vee C), B \Rightarrow A) \tag{1}
\end{equation*}
$$ $B \vdash B \vee C \quad($ from 2.6.9(i) $, A \Rightarrow B, B \Rightarrow C)$

$C \vdash B \vee C \quad($ from 2.6.9(i) $, A \Rightarrow C, B \Rightarrow B)$
$B \vdash A \vee(B \vee C) \quad$ (from (transitivity), (1), (3))
$C \vdash A \vee(B \vee C) \quad$ (from (transitivity), (1), (4))
$A \vee B \vdash A \vee(B \vee C) \quad($ from $(\vee-), \quad(2), \quad(5))$
(8) $(A \vee B) \vee C \vdash A \vee(B \vee C) \quad($ from $(\vee-), \quad(7),(4))$
(iv) $A \vee B \mapsto \neg A \rightarrow B$

Proof. The proof for $A \vee B \vdash \neg A \rightarrow B$ is as follow.
(1) $A, \neg A, \neg B \vdash A \quad($ from $(\in))$
(2) $A, \neg A, \neg B \vdash \neg A \quad($ from $(\epsilon))$
(3) $A, \neg A \vdash B \quad$ (from ($\neg-)$, (1), (2))

$$
\begin{equation*}
A \vdash \neg A \rightarrow B \quad(\text { from }(\rightarrow+),(3)) \tag{4}
\end{equation*}
$$

$B \vdash \neg A \rightarrow B \quad$ (from 2.6.4 (ii))
(6)

$$
\begin{equation*}
A \vee B \vdash \neg A \rightarrow B \quad(\text { from }(\vee-), \quad(4), \quad(5)) \tag{5}
\end{equation*}
$$

Before proving $\neg A \rightarrow B \vdash A \vee B$, we will first prove a lemma:
(contraposition): if $A \vdash B$, then $\neg B \vdash \neg A$.

The proof is as follow.
(1) $A \vdash B \quad$ (given)
(2) $\quad \varnothing \vdash A \rightarrow B \quad($ from $(\rightarrow+),(1))$
(3) $A, \neg B \vdash A \rightarrow B \quad($ from (+), (2))
(4) $A, \neg B \vdash A \quad($ from $(\epsilon))$
(5) $A, \neg B \vdash \neg B \quad($ from $(\epsilon))$
(6) $A, \neg B \vdash B \quad($ from $(\rightarrow-),(3),(4))$
(7) $\quad \neg B \vdash \neg A \quad($ from $(\neg-),(5),(6))$

Then, the proof for $\neg A \rightarrow B \vdash A \vee B$ can be generated as follow.
$A \vdash A \vee B \quad($ from 2.6.9(i) $, A \Rightarrow A, B \Rightarrow B)$
$\neg(A \vee B) \vdash \neg A \quad$ (from (contraposition), (1))
(3) $\quad \neg(A \vee B) \vdash \neg B \quad$ (similar to (2))
(4) $\neg A \rightarrow B, \neg(A \vee B) \vdash \neg A \quad$ (from (+), (2))
(5) $\neg A \rightarrow B, \neg(A \vee B) \vdash \neg B \quad$ (from (+), (3))
(6) $\neg A \rightarrow B, \neg(A \vee B) \vdash \neg A \rightarrow B \quad($ from $(\epsilon))$
(7) $\neg A \rightarrow B, \neg(A \vee B) \vdash B \quad$ (from $(\rightarrow-)$, (4), (6))
(8) $\quad \neg A \rightarrow B \vdash A \vee B \quad($ from ($\neg-),(5),(7))$

The line (2) and (3) can be picked out as a theorem, which we will use many times afterwards:

$$
(\neg \vee): \neg(A \vee B) \vdash \neg A, \neg B .
$$

(v) $A \rightarrow B \mapsto \neg A \vee B$

Proof. The proof for $\neg A \vee B \vdash A \rightarrow B$ is as follow.

(1)	$A, \neg A, \neg B \vdash A$	
(2)	$A, \neg A, \neg B \vdash \neg A$	
(from $(\in))$		
(3)	$A, \neg A \vdash B$	
(4rom $(\neg-),(1),(2))$		
(4)	$\neg A \vdash A \rightarrow B$	$($ from $(\rightarrow+),(3))$
(5)	$B \vdash A \rightarrow B$	$($ from 2.6.4 (ii))
(6)	$\neg A \vee B \vdash A \rightarrow B$	$($ from $(\vee-),(4),(5))$

Before proving $A \rightarrow B \vdash \neg A \vee B$, we will first prove a lemma:

$$
(\neg \neg): A \mapsto \neg \neg A .
$$

The proof is as follow.

> (1) $\neg \neg A, \neg A \vdash \neg A \quad($ from $\in)$
> (2) $\neg \neg A, \neg A \vdash \neg \neg A \quad($ from $\in)$
> (3) $\quad \neg \neg A \vdash A \quad($ from $\neg-$, (1), (2))
> (4) $\neg \neg \neg A, A \vdash A \quad($ from $\in)$
> (5) $\neg \neg \neg A, A \vdash \neg \neg \neg A \quad($ from $\in)$
> (6) $\quad \neg \neg \neg A \vdash \neg A \quad($ from (3), $A \Rightarrow \neg A)$
> (7) $\neg \neg \neg A, A \vdash \neg A \quad$ (from (transitivity), (5), (6))
> (8) $A \vdash \neg \neg A \quad($ from $\neg-$, (4), (7))

The proof for $A \rightarrow B \vdash \neg A \vee B$ can be generated as follow.

$$
\begin{equation*}
\neg A \vdash \neg A \vee B \quad(\text { from } 2.6 .9(\mathrm{i}), \quad A \Rightarrow \neg A, B \Rightarrow B) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\neg(\neg A \vee B) \vdash \neg \neg A \quad(\text { from (contraposition), } \quad(1) ; \text { or }(\neg \vee)) \tag{2}
\end{equation*}
$$

(4) $A \rightarrow B, \neg(\neg A \vee B) \vdash \neg \neg A \quad($ from $(+),(2))$
(5) $\quad A \rightarrow B, \neg(\neg A \vee B) \vdash \neg B \quad$ (from $(+)$, (3))
(6) $\quad \neg \neg A \vdash A \quad($ from $(\neg \neg))$
(7) $A \rightarrow B, \neg(\neg A \vee B) \vdash A \quad$ (from (transitivity), (4), (6))
(8) $\quad A \rightarrow B, \neg(\neg A \vee B) \vdash A \rightarrow B \quad($ from $(\in))$
(9) $A \rightarrow B, \neg(\neg A \vee B) \vdash B \quad($ from $(\rightarrow-)$, (6), (8))

$$
\begin{equation*}
\neg A \rightarrow B \vdash A \vee B \quad(\text { from }(\neg-), \quad(5), \quad(9)) \tag{10}
\end{equation*}
$$

(vi) $\neg(A \vee B) \mapsto \neg A \wedge \neg B$

Proof. The proof for $\neg(A \vee B) \vdash \neg A \wedge \neg B$ is as follow.

$$
\begin{array}{lll}
(1) & \neg(A \vee B) \vdash \neg A & (\text { from }(\neg \vee)) \\
(2) & \neg(A \vee B) \vdash \neg B & (\text { from }(\neg \vee)) \\
(3) & \neg(A \vee B) \vdash \neg A \wedge \neg B & (\text { from }(\wedge+), \quad(1), \quad(2))
\end{array}
$$

The proof for $\neg A \wedge \neg B \vdash \neg(A \vee B)$ is as follow.

$$
\begin{equation*}
\neg \neg(A \vee B) \vdash A \vee B \tag{1}
\end{equation*}
$$

$($ from $(\neg \neg))$
(2) $\neg A, \neg B, \neg \neg(A \vee B) \vdash A \vee B$
(from $(+),(1))$

$$
\begin{equation*}
A \vee B \vdash \neg A \rightarrow B \tag{3}
\end{equation*}
$$

(from 2.6.9(v))
(4) $\neg A, \neg B, \neg \neg(A \vee B) \vdash \neg A \rightarrow B$
(5) $\neg A, \neg B, \neg \neg(A \vee B) \vdash \neg A$
(6) $\neg A, \neg B, \neg \neg(A \vee B) \vdash B$
$\neg A, \neg B, \neg \neg(A \vee B) \vdash \neg B$
$\neg A, \neg B \vdash \neg(A \vee B)$ $\neg A \vdash \neg B \rightarrow \neg(A \vee B)$
$\varnothing \vdash \neg A \rightarrow(\neg B \rightarrow \neg(A \vee B)) \quad($ from $(\rightarrow+), \quad(9))$
$\neg A \wedge \neg B \vdash \neg A \rightarrow(\neg B \rightarrow \neg(A \vee B)) \quad($ from $(+), \quad(10))$
$\neg A \wedge \neg B \vdash \neg A \wedge \neg B \quad$ (from $(\operatorname{Ref}))$
$\neg A \wedge \neg B \vdash \neg A$
(from (transitivity), (2), (3))
(from $(\in))$
(from $(\rightarrow-),(4), \quad(5))$
$($ from $(\in))$
(from ($\neg-),(6),(7))$
(from $(\rightarrow+),(8))$
$($ from $(\wedge-),(12))$
(14) $\neg A \wedge \neg B \vdash \neg B \quad($ from $(\wedge-)$, (12))
(15) $\neg A \wedge \neg B \vdash \neg B \rightarrow \neg(A \vee B) \quad($ from $(\rightarrow-), \quad$ (11), (13))
(16) $\neg A \wedge \neg B \vdash \neg(A \vee B) \quad$ (from $(\rightarrow-)$, (14),
(vii) $\neg(A \wedge B) \mapsto \neg A \vee \neg B$

Proof. Similar to (vi), the proof for $\neg(A \wedge B) \vdash \neg A \vee \neg B$ is as follow.

(1)	$\neg(\neg A \vee \neg B) \vdash \neg \neg A$	(from $(\neg \vee)$)
(2)	$\neg \neg A \vdash A$	$($ from $(\neg \neg))$
(3)	$\neg(\neg A \vee \neg B) \vdash A$	(from (transitivity), (1), (2))
(4)	$\neg(\neg A \vee \neg B) \vdash B$	(similar to (3))
(5)	$\neg(\neg A \vee \neg B) \vdash A \wedge B$	$($ from $(\wedge+), ~(3), ~(4))$
(6)	$\neg(A \wedge B) \vdash \neg \neg(\neg A \vee \neg B)$	(from (contraposition), (5))
(7)	$\neg \neg(\neg A \vee \neg B) \vdash(\neg A \vee \neg B)$	$($ from $(\neg \neg))$
(8)	$\neg(A \wedge B) \vdash(\neg A \vee \neg B)$	(from (transitivity), (6), (7))

The proof for $\neg A \vee \neg B \vdash \neg(A \wedge B)$ is as follow.
(1)

$\neg \neg(\neg A \vee \neg B) \vdash \neg A \vee \neg B$	(from ($\neg\urcorner$))
$A, B, \neg \neg(\neg A \vee \neg B) \vdash \neg A \vee \neg B$	(from (+), (1))
$\neg A \vee \neg B \vdash \neg \neg A \rightarrow \neg B$	(from 2.6.9(v))
$A, B, \neg \neg(\neg A \vee \neg B) \vdash \neg \neg A \rightarrow \neg B$	(from (transitivity), (2), (3))
$A, B, \neg \neg(\neg A \vee \neg B) \vdash A$	(from (ϵ))
$A \vdash \neg \neg A$	(from ($\neg\urcorner$))
$A, B, \neg \neg(\neg A \vee \neg B) \vdash \neg \neg A$	(from (transitivity), (5), (6))
$A, B, \neg \neg(\neg A \vee \neg B) \vdash \neg B$	$($ from (\rightarrow) , , (4), (7))
$A, B, \neg \neg(\neg A \vee \neg B) \vdash B$	(from (\in))
$A, B \vdash \neg(\neg A \vee \neg B)$	(from ($\neg-)$, (8), (9))
$A \vdash B \rightarrow \neg(\neg A \vee \neg B)$	$($ from $(\rightarrow+),(10))$
$\varnothing \vdash A \rightarrow(B \rightarrow \neg(\neg A \vee \neg B))$	$($ from $(\rightarrow+),(11))$
$A \wedge B \vdash A \rightarrow(B \rightarrow \neg(\neg A \vee \neg B))$	$($ from (+), (12))
$A \wedge B \vdash A \wedge B$	(from (Ref))
$A \wedge B \vdash A$	$($ from (^-), (14))
$A \wedge B \vdash B$	$($ from (^-), (14))
$A \wedge B \vdash B \rightarrow \neg(\neg A \vee \neg B)$	$($ from $(\rightarrow-),(13),(15))$
$A \wedge B \vdash \neg(\neg A \vee \neg B)$	$($ from $(\rightarrow-),(16),(17))$
$\neg \neg(\neg A \vee \neg B) \vdash \neg(A \wedge B)$	(from (contraposition), (18))
$\neg A \vee \neg B \vdash \neg \neg(\neg A \vee \neg B)$	(from ($\neg\urcorner$))
$\neg A \vee \neg B \vdash \neg(A \wedge B)$	(from (transitivity), (19), (20))

(from ($\neg\urcorner)$)
(2)

$$
\begin{equation*}
\neg A \vee \neg B \vdash \neg \neg A \rightarrow \neg B \tag{3}
\end{equation*}
$$

(4) $A, B, \neg \neg(\neg A \vee \neg B) \vdash \neg \neg A \rightarrow \neg B$
(8) $A, B, \neg \neg(\neg A \vee \neg B) \vdash \neg B$
(9) $A, B, \neg \neg(\neg A \vee \neg B) \vdash B$

$$
\begin{array}{rlrl}
A, & B & \vdash \neg(\neg A \vee \neg B) & \\
& A \vdash B \rightarrow \neg(\neg A \vee \neg B) & & (\text { from }(\neg-),(8),(9)) \\
& \varnothing & \vdash A \rightarrow(B \rightarrow \neg),(10)) \\
& (\neg A \vee \neg B)) & & (\text { from }(\rightarrow+),(11))
\end{array}
$$

$$
\begin{equation*}
A \wedge B \vdash A \rightarrow(B \rightarrow \neg(\neg A \vee \neg B)) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
A \wedge B \vdash A \wedge B \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
A \wedge B \vdash A \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
A \wedge B \vdash B \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
A \wedge B \vdash B \rightarrow \neg(\neg A \vee \neg B) \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
A \wedge B \vdash \neg(\neg A \vee \neg B) \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\neg \neg(\neg A \vee \neg B) \vdash \neg(A \wedge B) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\neg A \vee \neg B \vdash \neg \neg(\neg A \vee \neg B) \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\neg A \vee \neg B \vdash \neg(A \wedge B) \tag{21}
\end{equation*}
$$

(from (+), (1))
(from 2.6.9(v))
(from (transitivity), (2), (3))
(from ((\in))
(from $(\neg \neg)$)
(from (transitivity), (5), (6))
(from $(\rightarrow-),(4),(7))$
(from (ϵ))
(from (+), (12))
(from (Ref))
(from (^-), (14))
(from (^-), (14))
(from $(\rightarrow-),(13),(15))$
(from $(\rightarrow-),(16),(17))$
(from (contraposition), (18))
(from $(\neg \neg)$)
(from (transitivity), (19), (20))
(viii) $\varnothing \vdash A \vee \neg A$

Proof. The proof is as follow.

$$
\begin{array}{rlrl}
(1) & \neg(A \vee \neg A) & \vdash \neg A & \\
(2) & \neg(A \vee \neg m(\neg \vee)) \\
\text { (3) } & \varnothing & \vdash A \vee \neg \neg \neg A & \\
(\text { from }(\neg \vee)) \\
& & (\text { from }(\neg-), \quad(1), & (2))
\end{array}
$$

