
Introduction to Artificial Intelligence

Homework 4

Wang Rongqing

2015K8009929046

September 25, 2017

Answer Sheet

Prove that

Theorem 1 NegaScout is correct.

Before proving, we must define what correctness is.

We take the definition from the zero-sum quality of the game, and the assumption that each player tries

its best to win more. Therefore we can define the correct value function Correct(s) as follow.

Definition 1 The correct value function Correct(s) is defined as:

Correct(s) =

{
Utility(s), TerminalTest(s) (1a)

max{−Correct(Result(s, a))|a ∈ Action(s)}, otherwise. (1b)

Notice that the searching tree has no loop. Otherwise “correctness” itself is not well-defined. Also

“correctness” can be defined on a looped search tree by replacing the loop nodes into terminal nodes upon

second entering, effectively removing loops in the searching tree. Therefore, no loop is one of the assumptions.

And the theorem we need to prove is:

Theorem 2 For any s in the searching tree:

NegaScout(s, α, β)


∈ [Correct(s), α], Correct(s) ≤ α (2a)

= Correct(s), α < Correct(s) < β (2b)

∈ [β,Correct(s)], Correct(s) ≥ β (2c)

Once we have proved the theorem, we can get the correctness of NegaScout algorithm as a corollary:

Corollary 1

NegaScout(s0,−∞,+∞) = Correct(s0) (3)

which is that: using NegaScout to search from the starting node s0 will yield the correct result.

For the ease of description, below is the algorithm (rephrased, equivalent):

1



NegaScout(s, α, β), d is null-window width, typically no larger than any β − α

1 if TerminalTest(s)

(leaf) 2 return Utility(s)

3 v = −∞
(loop) 4 for a ∈ Action(s)

5 s′ = Result(s, a)

6 if a is the first action or β − α < d

(first-search) 7 result = −NegaScout(s′,−β,−α)

8 else

(scout) 9 result = −NegaScout(s′,−α− d,−α)

10 if α < result < β

(full-research) 11 result = −NegaScout(s′,−β,−α)

(too-good) 12 if result ≥ β return result

13 v = max(v, result)

(update-α) 14 α = max(α, v)

(all-searched) 15 return v

Now we prove theorem 2.

Proof 1 We use induction on rooted searching tree T (V,E). We can use induction since the tree has no

loop.

• For all leaves l ∈ L = {s ∈ V |TerminalTest(s)} on the tree, NegaScout(l, α, β) will go to (leaf)

line directly. Then for l, we have, from (1a), that

NegaScout(l, α, β) = Utility(l) = Correct(l). (4)

• For all other nodes on the tree, suppose we have known that, for all of its sub-nodes, the aforementioned

theorem holds. Then, the algorithm will stop at (too-good) or (all-searched).

We denote the value of α at the entry α0, and the value after the ith loop in (loop) to be αi, and

we denote that m := |Action(s)|. Notice that (update-α) in the algorithm guarantees that the series

{α0, α1, · · · , αm} is non-descending.

– If the algorithm stopped at (too-good), then either (first-search), (scout), or (full-research) returned

a result larger than β. Let si be the offending result state of s.

∗ If result is from (first-search) or (full-research), then we can have directly

NegaScout(si,−β,−αi−1) ≤ −β, (5)

by (2a) in induction hypothesis, we have

Correct(si) ≤ NegaScout(si,−β,−αi−1) ≤ −β. (6)

∗ If result is from (scout), then we will have

NegaScout(si,−αi−1 − d,−αi−1) ≤ −β. (7)

However, by induction hypothesis (2a) we can have that

Correct(si) ≤ NegaScout(si,−αi−1 − d,−αi−1) ≤ −β, (8)

2



i.e.

Correct(si) ≤ −β. (9)

Therefore, by induction hypothesis (2a) we can have

Correct(si) ≤ NegaScout(si,−β,−αi−1) ≤ −β. (6)

In consequence, in both cases, Correct(si) ≤ NegaScout(si,−β,−αi−1) ≤ −β.

Therefore,
Correct(s) ≥ −Correct(si)

≥ −NegaScout(si,−β,−αi−1)

= NegaScout(s, α, β)

≥ β,

(10)

which is (2c).

– If the algorithm stopped at (all-searched), then all results yielded in (first-search), (scout), or

(full-research) is less than β.

∗ If v = αm > α, then there must exist si in (first-search) and (full-search) that yields the v.

By induction hypothesis the v is correct itself, i.e.

NegaScout(si,−β,−αi−1) = Correct(si). (11)

(NegaScout(si,−β,−αi−1) < −αi−1, since otherwise si is not the best state found)

For other sj, either its calculated value is no higher than −αj−1, in which case

Correct(sj) = NegaScout(sj ,−β,−αj−1)

≥ NegaScout(si,−β,−αi−1) = Correct(si),
(12)

or it is higher than −αj−1, in which case

Correct(sj) ≥ NegaScout(sj ,−β,−αj−1) ≥ −αj−1

≥ −αm = NegaScout(si,−β,−αi−1) = Correct(si).
(13)

Considering both cases, hence, by (1b),

NegaScout(s, α, β) = −Correct(si) = max
1≤j≤m

{−Correct(sj)} = Correct(s), (14)

which is (2b).

∗ If v ≤ α, that is, α is not updated in the whole for loop, i.e. α = α0 = α1 = · · · = αm, then

by definition, for all sj occurred, either

NegaScout(sj ,−α− d,−α) ≥ −α, (15)

or

NegaScout(sj ,−β,−α) ≥ −α, (16)

and both are equivalent and can deduce to each other (although NegaScout(sj ,−α− d,−α)

does not necessarily equal NegaScout(sj ,−β,−α)), since both can be deduced to and from

Correct(sj) ≥ −α by induction hypothesis (2c). Therefore, we have

Correct(sj) ≥ NegaScout(sj ,−β,−α) ≥ −α, (17)

i.e. for all sj occurred,

−Correct(sj) ≤ −NegaScout(sj ,−β,−α) ≤ α. (18)

3



Suppose

NegaScout(s, α, β) = −NegaScout(si1 , ∗,−α), (19)

and

Correct(s) = max
1≤j≤m

{−Correct(sj)} = −Correct(si2). (20)

Then, we will have
Correct(s) = −Correct(si2)

≤ −NegaScout(si2 , ∗,−α)

≤ −NegaScout(si1 , ∗,−α)

= NegaScout(s, α, β)

≤ α,

(21)

which is (2a).

□

Notice that the proof itself shows that, even if you use null-window in the first action, the correctness

is ensured. However, the design of the algorithm assumes that the first action is the best, so it does not

waste time to do scout and directly goes to (first-search). Searching after the first node is only used to verify

whether the first action is actually the best, therefore only when (scout) finds out α < result < β, namely

that the action is actually better than the previously found best (i.e. the current α value) will the algorithm

search more.

4


